KHT-09 **Heat Transfer through Lagged Pipe**

Specifications:

- Pipes Length of Pipes 1m (approx).
- M. S. Pipe inside 5cm dia. approx, M. S. Pipe Middle -10cm dia (approx).
- · M. S. Pipe Outer 10cm Control Panel consisting of
 - Voltmeter-0-200 Volts.,
 - •Ammeter 0 2 Amp.
 - ·Dimmer stat for heater, 0 - 230 Volts, 2 Amp.
 - Digital Temperature indicator, 0-300°C using Chromelthermocouples, Allumel provided with cold junction

compensation. Nichrome cartridge heater of suitable capacity and length.

Range of Experiments:

- · To determine heat flow rate through lagged pipe and compare it with the heater input for known values of thermal conductivity of lagging material.
- To determine thermal conductivity of lagging material by assuming input to be heat
- · To plot temperature distribution across lagging material.

Stefan Boltzman Apparatus KHT-10

Specifications:

- · Hemisphere dia 200 mm (approx).
- · Jacket disc 250 mm.
- Test disc size 20 mm dia x 1.5mm thickness.
- Water tank of sufficient capacity with a 1.5 kw immersion heater. Control Panel comprises of :
 - i) Supply for heater.
 - ii) Digital temperature indicator 0-200°C using Chormal-Alumel thermocouples,

provided with cold junction compensation.

iii)Built in timer for temperature readings at 5 seconds interval.

Range of Experiments:

- · Determination of Stefan -Boltzmann constant.
- · Study of effect of hemisphere temperature on the constant.

Shell and Tube Heat Exchanger KHT-11

Specifications:

 Shell - Material -M. S.

> -208mm -Inner dia

-Thickness -6mm

-Length -500mm

25% cut baffles at 100mm distance - 4nos.

 Tubes Material - Copper

- I. D.

- 13mm

- O. D.

- 16mm

Length of tubes

- 500mm

Number of Tubes - 16

- Thermometers- 10-0- to 110°C 2nos.
- Geysers 230 V A. C. 3kw. 1 nos.

Range of Experiments:

- Determination of heat transfer coefficient for inner and outer surface of tubes.
- · Study of variation of heat transfer coefficient the type of flow.